

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Developing / Debugging guidance code

When changing guidance code, it is easy to introduce problems somewhere in the network.
To get a better feeling of how your changes impact the OSRM experience, we offer ways of generating geojson output to inspect (e.g. with Mapbox Studio).
When you do changes, make sure to inspect a few areas for the impact of the changes.

How to use GeoJson-Debugging

This is a short guide to describe usage of our GeoJson debug logging mechanism. It is synchronized to guarantee thread-safe logging.

Outputting into a single file

To use it, the inclusion of geojson_debug_logger.hpp geojson_debug_policies.hpp from the util directory is required.

Geojson debugging requires a few simple steps to output data into a feature collection.

	Create a Scoped Guard that lives through the process and provide it with all required datastructures (it needs to span the lifetime of all your logging efforts)

	At the location of the output, simply call Write with your own parameters.

A guard (ScopedGeojsonLoggerGuard) requires a logging policy. Per default we provide a way of printing out node-ids as coordinates.

The initialisation to do so looks like this:
util::ScopedGeojsonLoggerGuard<util::NodeIdVectorToLineString> geojson_guard("debug.geojson", data-for-conversion);
Make sure to give the guard a name, so it actually gets a lifetime.

The field data-for-conversion can be an arbitrary long set of features and needs to match the parameters used for constructing our policy (in this case util::NodeIdVectorToLineString).

The policy itself offers a operator() accepting a vector of NodeID.

For outputting data into our file (debug.geojson), we simply need to call the matching logging routine of the guard: util::ScioedGeojsonLoggerGuard<util::NodeIdVectorToLineString>::Write(list_of_node_ids);
(or guard.Write(list_of_node_ids) if you created an instance).

Possible Scopeguard Location

Think of the scopeguard as you would do of any reference. If you wan’t to access to logging during a call, the guard object must be alive and valid.

As an example: a good location to create the a scopeguard to log decisions in the edge-based-graph-factory would be right before we run it (here [https://github.com/Project-OSRM/osrm-backend/blob/a933b5d94943bf3edaf42c84a614a99650d23cba/src/extractor/extractor.cpp#L497]). If you put util::ScopedGeojsonLoggerGuard<util::NodeIdVectorToLineString> geojson_guard("debug.geojson", node_coordinate_vector); at that location, you can then print util::ScopedGeojsonLoggerGuard<util::NodeIdVectorToLineString>::Write(list_of_node_ids); anywhere within the edge-based-graph-factory.

This location would enable call for all guidance related pre-processing which is called in the edge-based-graph-factory.
Logging any turn-handler decisions, for example, would now be possible.

Limitations

GeoJson debugging requires a single GeoJsonGuard (ScopedGeojsonLoggerGuard) for each desired output file.
For each set of template parameters, only the most recent guard will actually produce output.

util::ScopedGeojsonLoggerGuard<util::NodeIdVectorToLineString> geojson_guard("debug.geojson", data-for-conversion);

util::ScopedGeojsonLoggerGuard<util::NodeIdVectorToLineString> geojson_guard("debug-2.geojson", data-for-conversion);

Will not provide a way to write into two files, but only debug-2 will actually contain features.

We cannot nest-these calls.

If we want to use the same policy for multiple files, we need to use different template parameters both for the logger and the guard.

util::ScopedGeojsonLoggerGuard<util::NodeIdVectorToLineString,0> geojson_guard("debug.geojson", data-for-conversion);

util::ScopedGeojsonLoggerGuard<util::NodeIdVectorToLineString,1> geojson_guard("debug-2.geojson", data-for-conversion);

as well as,

util::ScopedGeojsonLoggerGuardr<util::NodeIdVectorToLineString,0>::Write(list_of_node_ids);

util::ScopedGeojsonLoggerGuardr<util::NodeIdVectorToLineString,1>::Write(list_of_node_ids);

OSRM HTTP server

The built-in HTTP server is a basic HTTP/1.0 server that supports a ‘keep-alive’ extension. Persistent connections are limited to 512 requests per
connection and allow no more than 5 seconds between requests.

General options

All OSRM HTTP requests use a common structure.

The following syntax applies to all services, except as noted.

Requests

GET /{service}/{version}/{profile}/{coordinates}[.{format}]?option=value&option=value

Parameter	Description
—	—
service	One of the following values: route, nearest, table, match, trip, tile
version	Version of the protocol implemented by the service. v1 for all OSRM 5.x installations
profile	Mode of transportation, is determined statically by the Lua profile that is used to prepare the data using osrm-extract. Typically car, bike or foot if using one of the supplied profiles.
coordinates	String of format {longitude},{latitude};{longitude},{latitude}[;{longitude},{latitude} ...] or polyline({polyline}) or polyline6({polyline6}).
format	json or flatbuffers. This parameter is optional and defaults to json.

Passing any option=value is optional. polyline follows Google’s polyline format with precision 5 by default and can be generated using this package [https://www.npmjs.com/package/polyline].

To pass parameters to each location some options support an array-like encoding:

Request options

Option	Values	Description
—————-	——————————————————–	———–
bearings	{bearing};{bearing}[;{bearing} ...]	Limits the search to segments with given bearing in degrees towards true north in a clockwise direction.
radiuses	{radius};{radius}[;{radius} ...]	Limits the search to given radius in meters.
generate_hints	true (default), false	Adds a Hint to the response which can be used in subsequent requests, see hints parameter.
hints	{hint};{hint}[;{hint} ...]	Hint from previous request to derive position in street network.
approaches	{approach};{approach}[;{approach} ...]	Keep waypoints on curbside.
exclude	{class}[,{class}]	Additive list of classes to avoid, the order does not matter.
snapping	default (default), any	Default snapping avoids is_startpoint (see profile) edges, any will snap to any edge in the graph
skip_waypoints	true, false (default)	Removes waypoints from the response. Waypoints are still calculated, but not serialized. Could be useful in case you are interested in some other part of the response and do not want to transfer waste data.

Where the elements follow the following format:

Element	Values
————	——————————————————–
bearing	{value},{range} integer 0 .. 360,integer 0 .. 180
radius	double >= 0 or unlimited (default)
hint	Base64 string
approach	curb or unrestricted (default)
class	A class name determined by the profile or none.

{option}={element};{element}[;{element} ...]

The number of elements must match exactly the number of locations (except for generate_hints and exclude). If you don’t want to pass a value but instead use the default you can pass an empty element.

Example: 2nd location uses the default value for option:

{option}={element};;{element}

Example Requests

Query on Berlin with three coordinates:
curl 'http://router.project-osrm.org/route/v1/driving/13.388860,52.517037;13.397634,52.529407;13.428555,52.523219?overview=false'

Query on Berlin excluding the usage of motorways:
curl 'http://router.project-osrm.org/route/v1/driving/13.388860,52.517037;13.397634,52.529407?exclude=motorway'

Using polyline:
curl 'http://router.project-osrm.org/route/v1/driving/polyline(ofp_Ik_vpAilAyu@te@g`E)?overview=false'

Responses

Code

Every response object has a code property containing one of the strings below or a service dependent code:

Type	Description
——————-	———————————————————————————-
Ok	Request could be processed as expected.
InvalidUrl	URL string is invalid.
InvalidService	Service name is invalid.
InvalidVersion	Version is not found.
InvalidOptions	Options are invalid.
InvalidQuery	The query string is syntactically malformed.
InvalidValue	The successfully parsed query parameters are invalid.
NoSegment	One of the supplied input coordinates could not snap to the street segment.
TooBig	The request size violates one of the service-specific request size restrictions.

	message is a optional human-readable error message. All other status types are service-dependent.

	In case of an error the HTTP status code will be 400. Otherwise, the HTTP status code will be 200 and code will be Ok.

Data version

Every response object has a data_version property containing a timestamp from the original OpenStreetMap file. This field is optional. It can be omitted if the data_version parameter was not set on the osrm-extract stage or the OSM file has not osmosis_replication_timestamp section.

Example response

{
"code": "Ok",
"message": "Everything worked",
"data_version": "2017-11-17T21:43:02Z"
}

Services

Nearest service

Snaps a coordinate to the street network and returns the nearest n matches.

GET http://{server}/nearest/v1/{profile}/{coordinates}.json?number={number}

Where coordinates only supports a single {longitude},{latitude} entry.

In addition to the general options the following options are supported for this service:

Option	Values	Description
————	——————————	—————————————————-
number	integer >= 1 (default 1)	Number of nearest segments that should be returned.

As waypoints is a single thing, returned by that service, using it with the option skip_waypoints set to true is quite useless, but still
possible. In that case, only the code field will be returned.

Response

	code if the request was successful Ok otherwise see the service dependent and general status codes.

	waypoints array of Waypoint objects sorted by distance to the input coordinate. Each object has at least the following additional properties:

	nodes: Array of OpenStreetMap node ids.

Example Requests

Querying nearest three snapped locations of `13.388860,52.517037` with a bearing between `20° - 340°`.
curl 'http://router.project-osrm.org/nearest/v1/driving/13.388860,52.517037?number=3&bearings=0,20'

Example Response

{
 "waypoints" : [
 {
 "nodes": [
 2264199819,
 0
],
 "hint" : "KSoKADRYroqUBAEAEAAAABkAAAAGAAAAAAAAABhnCQCLtwAA_0vMAKlYIQM8TMwArVghAwEAAQH1a66g",
 "distance" : 4.152629,
 "name" : "Friedrichstraße",
 "location" : [
 13.388799,
 52.517033
]
 },
 {
 "nodes": [
 2045820592,
 0
],
 "hint" : "KSoKADRYroqUBAEABgAAAAAAAAAAAAAAKQAAABhnCQCLtwAA7kvMAAxZIQM8TMwArVghAwAAAQH1a66g",
 "distance" : 11.811961,
 "name" : "Friedrichstraße",
 "location" : [
 13.388782,
 52.517132
]
 },
 {
 "nodes": [
 0,
 21487242
],
 "hint" : "KioKgDbbDgCUBAEAAAAAABoAAAAAAAAAPAAAABlnCQCLtwAA50vMADJZIQM8TMwArVghAwAAAQH1a66g",
 "distance" : 15.872438,
 "name" : "Friedrichstraße",
 "location" : [
 13.388775,
 52.51717
],
 }
],
 "code" : "Ok"
}

Route service

Finds the fastest route between coordinates in the supplied order.

GET /route/v1/{profile}/{coordinates}?alternatives={true|false|number}&steps={true|false}&geometries={polyline|polyline6|geojson}&overview={full|simplified|false}&annotations={true|false}

In addition to the general options the following options are supported for this service:

Option	Values	Description
————	———————————————	——————————————————————————-
alternatives	true, false (default), or Number	Search for alternative routes. Passing a number alternatives=n searches for up to n alternative routes.*
steps	true, false (default)	Returned route steps for each route leg
annotations	true, false (default), nodes, distance, duration, datasources, weight, speed	Returns additional metadata for each coordinate along the route geometry.
geometries	polyline (default), polyline6, geojson	Returned route geometry format (influences overview and per step)
overview	simplified (default), full, false	Add overview geometry either full, simplified according to highest zoom level it could be display on, or not at all.
continue_straight	default (default), true, false	Forces the route to keep going straight at waypoints constraining uturns there even if it would be faster. Default value depends on the profile.
waypoints	{index};{index};{index}...	Treats input coordinates indicated by given indices as waypoints in returned Match object. Default is to treat all input coordinates as waypoints.

* Please note that even if alternative routes are requested, a result cannot be guaranteed.

Response

	code if the request was successful Ok otherwise see the service dependent and general status codes.

	waypoints: Array of Waypoint objects representing all waypoints in order:

	routes: An array of Route objects, ordered by descending recommendation rank.

In case of error the following codes are supported in addition to the general ones:

Type	Description
——————-	—————–
NoRoute	No route found.

All other properties might be undefined.

Example Request

Query on Berlin with three coordinates and no overview geometry returned:
curl 'http://router.project-osrm.org/route/v1/driving/13.388860,52.517037;13.397634,52.529407;13.428555,52.523219?overview=false'

Table service

Computes the duration of the fastest route between all pairs of supplied coordinates. Returns durations or distances or both between the coordinate pairs. Note that the distances are not the shortest distance between two coordinates, but rather the distances of the fastest routes. Durations are in seconds and distances are in meters.

GET /table/v1/{profile}/{coordinates}?{sources}=[{elem}...];&{destinations}=[{elem}...]&annotations={duration|distance|duration,distance}

Options

In addition to the general options the following options are supported for this service:

Option	Values	Description
————	————————————————–	———————————————
sources	{index};{index}[;{index} ...] or all (default)	Use location with given index as source.
destinations	{index};{index}[;{index} ...] or all (default)	Use location with given index as destination.
annotations	duration (default), distance, or duration,distance	Return the requested table or tables in response.
fallback_speed	double > 0	If no route found between a source/destination pair, calculate the as-the-crow-flies distance, then use this speed to estimate duration.
fallback_coordinate	input (default), or snapped	When using a fallback_speed, use the user-supplied coordinate (input), or the snapped location (snapped) for calculating distances.
scale_factor	double > 0	Use in conjunction with annotations=durations. Scales the table duration values by this number.

Unlike other array encoded options, the length of sources and destinations can be smaller or equal
to number of input locations;

With skip_waypoints set to true, both sources and destinations arrays will be skipped.

Example:

sources=0;5;7&destinations=5;1;4;2;3;6

Element	Values
————	—————————–
index	0 <= integer < #locations

Example Request

Returns a 3x3 duration matrix:
curl 'http://router.project-osrm.org/table/v1/driving/13.388860,52.517037;13.397634,52.529407;13.428555,52.523219'

Returns a 1x3 duration matrix
curl 'http://router.project-osrm.org/table/v1/driving/13.388860,52.517037;13.397634,52.529407;13.428555,52.523219?sources=0'

Returns a asymmetric 3x2 duration matrix with from the polyline encoded locations `qikdcB}~dpXkkHz`:
curl 'http://router.project-osrm.org/table/v1/driving/polyline(egs_Iq_aqAppHzbHulFzeMe`EuvKpnCglA)?sources=0;1;3&destinations=2;4'

Returns a 3x3 duration matrix:
curl 'http://router.project-osrm.org/table/v1/driving/13.388860,52.517037;13.397634,52.529407;13.428555,52.523219?annotations=duration'

Returns a 3x3 distance matrix for CH:
curl 'http://router.project-osrm.org/table/v1/driving/13.388860,52.517037;13.397634,52.529407;13.428555,52.523219?annotations=distance'

Returns a 3x3 duration matrix and a 3x3 distance matrix for CH:
curl 'http://router.project-osrm.org/table/v1/driving/13.388860,52.517037;13.397634,52.529407;13.428555,52.523219?annotations=distance,duration'

Response

	code if the request was successful Ok otherwise see the service dependent and general status codes.

	durations array of arrays that stores the matrix in row-major order. durations[i][j] gives the travel time from
the i-th source to the j-th destination. Values are given in seconds. Can be null if no route between i and j can be found.

	distances array of arrays that stores the matrix in row-major order. distances[i][j] gives the travel distance from
the i-th source to the j-th destination. Values are given in meters. Can be null if no route between i and j can be found.

	sources array of Waypoint objects describing all sources in order

	destinations array of Waypoint objects describing all destinations in order

	fallback_speed_cells (optional) array of arrays containing i,j pairs indicating which cells contain estimated values based on fallback_speed. Will be absent if fallback_speed is not used.

In case of error the following codes are supported in addition to the general ones:

Type	Description
——————	—————–
NoTable	No route found.
NotImplemented	This request is not supported

All other properties might be undefined.

Example Response

{
 "sources": [
 {
 "location": [
 13.3888,
 52.517033
],
 "hint": "PAMAgEVJAoAUAAAAIAAAAAcAAAAAAAAArss0Qa7LNEHiVIRA4lSEQAoAAAAQAAAABAAAAAAAAADMAAAAAEzMAKlYIQM8TMwArVghAwEA3wps52D3",
 "name": "Friedrichstraße"
 },
 {
 "location": [
 13.397631,
 52.529432
],
 "hint": "WIQBgL6mAoAEAAAABgAAAAAAAAA7AAAAhU6PQHvHj0IAAAAAQbyYQgQAAAAGAAAAAAAAADsAAADMAAAAf27MABiJIQOCbswA_4ghAwAAXwVs52D3",
 "name": "Torstraße"
 },
 {
 "location": [
 13.428554,
 52.523239
],
 "hint": "7UcAgP___38fAAAAUQAAACYAAABTAAAAhSQKQrXq5kKRbiZCWJo_Qx8AAABRAAAAJgAAAFMAAADMAAAASufMAOdwIQNL58wA03AhAwMAvxBs52D3",
 "name": "Platz der Vereinten Nationen"
 }
],
 "durations": [
 [
 0,
 192.6,
 382.8
],
 [
 199,
 0,
 283.9
],
 [
 344.7,
 222.3,
 0
]
],
 "destinations": [
 {
 "location": [
 13.3888,
 52.517033
],
 "hint": "PAMAgEVJAoAUAAAAIAAAAAcAAAAAAAAArss0Qa7LNEHiVIRA4lSEQAoAAAAQAAAABAAAAAAAAADMAAAAAEzMAKlYIQM8TMwArVghAwEA3wps52D3",
 "name": "Friedrichstraße"
 },
 {
 "location": [
 13.397631,
 52.529432
],
 "hint": "WIQBgL6mAoAEAAAABgAAAAAAAAA7AAAAhU6PQHvHj0IAAAAAQbyYQgQAAAAGAAAAAAAAADsAAADMAAAAf27MABiJIQOCbswA_4ghAwAAXwVs52D3",
 "name": "Torstraße"
 },
 {
 "location": [
 13.428554,
 52.523239
],
 "hint": "7UcAgP___38fAAAAUQAAACYAAABTAAAAhSQKQrXq5kKRbiZCWJo_Qx8AAABRAAAAJgAAAFMAAADMAAAASufMAOdwIQNL58wA03AhAwMAvxBs52D3",
 "name": "Platz der Vereinten Nationen"
 }
],
 "code": "Ok",
 "distances": [
 [
 0,
 1886.89,
 3791.3
],
 [
 1824,
 0,
 2838.09
],
 [
 3275.36,
 2361.73,
 0
]
],
 "fallback_speed_cells": [
 [0, 1],
 [1, 0]
]
}

Match service

Map matching matches/snaps given GPS points to the road network in the most plausible way.
Please note the request might result in multiple sub-traces. Large jumps in the timestamps (> 60s) or improbable transitions lead to trace splits if a complete matching could not be found.
The algorithm might not be able to match all points. Outliers are removed if they can not be matched successfully.

GET /match/v1/{profile}/{coordinates}?steps={true|false}&geometries={polyline|polyline6|geojson}&overview={simplified|full|false}&annotations={true|false}

In addition to the general options the following options are supported for this service:

Option	Values	Description
————	————————————————	——————————————————————————————
steps	true, false (default)	Returned route steps for each route
geometries	polyline (default), polyline6, geojson	Returned route geometry format (influences overview and per step)
annotations	true, false (default), nodes, distance, duration, datasources, weight, speed	Returns additional metadata for each coordinate along the route geometry.
overview	simplified (default), full, false	Add overview geometry either full, simplified according to highest zoom level it could be display on, or not at all.
timestamps	{timestamp};{timestamp}[;{timestamp} ...]	Timestamps for the input locations in seconds since UNIX epoch. Timestamps need to be monotonically increasing.
radiuses	{radius};{radius}[;{radius} ...]	Standard deviation of GPS precision used for map matching. If applicable use GPS accuracy.
gaps	split (default), ignore	Allows the input track splitting based on huge timestamp gaps between points.
tidy	true, false (default)	Allows the input track modification to obtain better matching quality for noisy tracks.
waypoints	{index};{index};{index}...	Treats input coordinates indicated by given indices as waypoints in returned Match object. Default is to treat all input coordinates as waypoints.

Parameter	Values
————	———————————–
timestamp	integer seconds since UNIX epoch
radius	double >= 0 (default 5m)

The radius for each point should be the standard error of the location measured in meters from the true location.
Use Location.getAccuracy() on Android or CLLocation.horizontalAccuracy on iOS.
This value is used to determine which points should be considered as candidates (larger radius means more candidates) and how likely each candidate is (larger radius means far-away candidates are penalized less).
The area to search is chosen such that the correct candidate should be considered 99.9% of the time (for more details see this ticket [https://github.com/Project-OSRM/osrm-backend/pull/3184]).

Response

	code if the request was successful Ok otherwise see the service dependent and general status codes.

	tracepoints: Array of Waypoint objects representing all points of the trace in order.
If the tracepoint was omitted by map matching because it is an outlier, the entry will be null.
Each Waypoint object has the following additional properties:

	matchings_index: Index to the Route object in matchings the sub-trace was matched to.

	waypoint_index: Index of the waypoint inside the matched route.

	alternatives_count: Number of probable alternative matchings for this tracepoint. A value of zero indicates that this point was matched unambiguously. Split the trace at these points for incremental map matching.

	matchings: An array of Route objects that assemble the trace. Each Route object has the following additional properties:

	confidence: Confidence of the matching. float value between 0 and 1. 1 is very confident that the matching is correct.

In case of error the following codes are supported in addition to the general ones:

Type	Description
——————-	———————
NoMatch	No matchings found.

All other properties might be undefined.

Trip service

The trip plugin solves the Traveling Salesman Problem using a greedy heuristic (farthest-insertion algorithm) for 10 or more waypoints and uses brute force for less than 10 waypoints.
The returned path does not have to be the fastest one. As TSP is NP-hard it only returns an approximation.
Note that all input coordinates have to be connected for the trip service to work.

GET /trip/v1/{profile}/{coordinates}?roundtrip={true|false}&source{any|first}&destination{any|last}&steps={true|false}&geometries={polyline|polyline6|geojson}&overview={simplified|full|false}&annotations={true|false}'

In addition to the general options the following options are supported for this service:

Option	Values	Description
————	————————————————	—————————————————————————
roundtrip	true (default), false	Returned route is a roundtrip (route returns to first location)
source	any (default), first	Returned route starts at any or first coordinate
destination	any (default), last	Returned route ends at any or last coordinate
steps	true, false (default)	Returned route instructions for each trip
annotations	true, false (default), nodes, distance, duration, datasources, weight, speed	Returns additional metadata for each coordinate along the route geometry.
geometries	polyline (default), polyline6, geojson	Returned route geometry format (influences overview and per step)
overview	simplified (default), full, false	Add overview geometry either full, simplified according to highest zoom level it could be display on, or not at all.

Fixing Start and End Points

It is possible to explicitly set the start or end coordinate of the trip.
When the source is set to first, the first coordinate is used as the start coordinate of the trip in the output. When the destination is set to last, the last coordinate will be used as the destination of the trip in the returned output. If you specify any, any of the coordinates can be used as the first or last coordinate in the output.

However, if source=any&destination=any the returned round-trip will still start at the first input coordinate by default.

Currently, not all combinations of roundtrip, source, and destination are supported.
Right now, the following combinations are possible:

roundtrip	source	destination	supported
:–	:–	:–	:–
true	first	last	yes
true	first	any	yes
true	any	last	yes
true	any	any	yes
false	first	last	yes
false	first	any	yes
false	any	last	yes
false	any	any	no

Example Requests

Round trip in Berlin with three stops:
curl 'http://router.project-osrm.org/trip/v1/driving/13.388860,52.517037;13.397634,52.529407;13.428555,52.523219'

Round trip in Berlin with four stops, starting at the first stop, ending at the last:
curl 'http://router.project-osrm.org/trip/v1/driving/13.388860,52.517037;13.397634,52.529407;13.428555,52.523219;13.418555,52.523215?source=first&destination=last'

Response

	code: if the request was successful Ok otherwise see the service dependent and general status codes.

	waypoints: Array of Waypoint objects representing all waypoints in input order. Each Waypoint object has the following additional properties:

	trips_index: Index to trips of the sub-trip the point was matched to.

	waypoint_index: Index of the point in the trip.

	trips: An array of Route objects that assemble the trace.

In case of error the following codes are supported in addition to the general ones:

Type	Description
——————-	———————
NoTrips	No trips found because input coordinates are not connected.
NotImplemented	This request is not supported

All other properties might be undefined.

Tile service

This service generates Mapbox Vector Tiles [https://www.mapbox.com/developers/vector-tiles/] that can be viewed with a vector-tile capable slippy-map viewer. The tiles contain road geometries and metadata that can be used to examine the routing graph. The tiles are generated directly from the data in-memory, so are in sync with actual routing results, and let you examine which roads are actually routable, and what weights they have applied.

GET /tile/v1/{profile}/tile({x},{y},{zoom}).mvt

The x, y, and zoom values are the same as described at https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames, and are supported by vector tile viewers like Mapbox GL JS [https://www.mapbox.com/mapbox-gl-js/api/].

Example request

This fetches a Z=13 tile for downtown San Francisco:
curl 'http://router.project-osrm.org/tile/v1/car/tile(1310,3166,13).mvt'

Example response

[image: _images/example-tile-response.png]example rendered tile
http://map.project-osrm.org/debug/#14.33/52.5212/13.3919

The response object is either a binary encoded blob with a Content-Type of application/x-protobuf, or a 404 error. Note that OSRM is hard-coded to only return tiles from zoom level 12 and higher (to avoid accidentally returning extremely large vector tiles).

Vector tiles contain two layers:

speeds layer:

Property	Type	Description
————	———	—————————————-
speed	integer	the speed on that road segment, in km/h
is_small	boolean	whether this segment belongs to a small (< 1000 node) strongly connected component [https://en.wikipedia.org/wiki/Strongly_connected_component]
datasource	string	the source for the speed value (normally lua profile unless you’re using the traffic update feature [https://github.com/Project-OSRM/osrm-backend/wiki/Traffic], in which case it contains the stem of the filename that supplied the speed value for this segment
duration	float	how long this segment takes to traverse, in seconds. This value is to calculate the total route ETA.
weight	integer	how long this segment takes to traverse, in units (may differ from duration when artificial biasing is applied in the Lua profiles). ACTUAL ROUTING USES THIS VALUE.
name	string	the name of the road this segment belongs to
rate	float	the value of length/weight - analogous to speed, but using the weight value rather than duration, rounded to the nearest integer
is_startpoint	boolean	whether this segment can be used as a start/endpoint for routes

turns layer:

Property	Type	Description
————	———	—————————————-
bearing_in	integer	the absolute bearing that approaches the intersection. -180 to +180, 0 = North, 90 = East
turn_angle	integer	the angle of the turn, relative to the bearing_in. -180 to +180, 0 = straight ahead, 90 = 90-degrees to the right
cost	float	the time we think it takes to make that turn, in seconds. May be negative, depending on how the data model is constructed (some turns get a “bonus”).
weight	float	the weight we think it takes to make that turn. May be negative, depending on how the data model is constructed (some turns get a “bonus”). ACTUAL ROUTING USES THIS VALUE
type	string	the type of this turn - values like turn, continue, etc. See the StepManeuver for a partial list, this field also exposes internal turn types that are never returned with an API response
modifier	string	the direction modifier of the turn (left, sharp left, etc)

Result objects

Route object

Represents a route through (potentially multiple) waypoints.

Properties

	distance: The distance traveled by the route, in float meters.

	duration: The estimated travel time, in float number of seconds.

	geometry: The whole geometry of the route value depending on overview parameter, format depending on the geometries parameter. See RouteStep’s geometry property for the parameter documentation.

	weight: The calculated weight of the route.

	weight_name: The name of the weight profile used during the extraction phase.

overview	Description
————	—————————–
simplified	Geometry is simplified according to the highest zoom level it can still be displayed in full.
full	Geometry is not simplified.
false	Geometry is not added.

	legs: The legs between the given waypoints, an array of RouteLeg objects.

Example

Three input coordinates, geometry=geojson, steps=false:

{
 "distance": 90.0,
 "duration": 300.0,
 "weight": 300.0,
 "weight_name": "duration",
 "geometry": {"type": "LineString", "coordinates": [[120.0, 10.0], [120.1, 10.0], [120.2, 10.0], [120.3, 10.0]]},
 "legs": [
 {
 "distance": 30.0,
 "duration": 100.0,
 "steps": []
 },
 {
 "distance": 60.0,
 "duration": 200.0,
 "steps": []
 }
]
}

RouteLeg object

Represents a route between two waypoints.

Properties

	distance: The distance traveled by this route leg, in float meters.

	duration: The estimated travel time, in float number of seconds.

	weight: The calculated weight of the route leg.

	summary: Summary of the route taken as string. Depends on the summary parameter:

summary	
————–	———————————————————————–
true	Names of the two major roads used. Can be empty if the route is too short.
false	empty string

	steps: Depends on the steps parameter.

steps	
————–	———————————————————————–
true	array of RouteStep objects describing the turn-by-turn instructions
false	empty array

	annotation: Additional details about each coordinate along with the route geometry:

annotations	
————–	——————————————————————————-
true	An Annotation object containing node ids, durations, distances, and weights.
false	undefined

Example

With steps=false and annotations=true:

{
 "distance": 30.0,
 "duration": 100.0,
 "weight": 100.0,
 "steps": [],
 "annotation": {
 "distance": [5,5,10,5,5],
 "duration": [15,15,40,15,15],
 "datasources": [1,0,0,0,1],
 "metadata": { "datasource_names": ["traffic","lua profile","lua profile","lua profile","traffic"] },
 "nodes": [49772551,49772552,49786799,49786800,49786801,49786802],
 "speed": [0.3, 0.3, 0.3, 0.3, 0.3]
 }
}

Annotation object

Annotation of the whole route leg with fine-grained information about each segment or node id.

Properties

	distance: The distance, in meters, between each pair of coordinates

	duration: The duration between each pair of coordinates, in seconds. Does not include the duration of any turns.

	datasources: The index of the data source for the speed between each pair of coordinates. 0 is the default profile, other values are supplied via --segment-speed-file to osrm-contract or osrm-customize. String-like names are in the metadata.datasource_names array.

	nodes: The OSM node ID for each coordinate along the route, excluding the first/last user-supplied coordinates

	weight: The weights between each pair of coordinates. Does not include any turn costs.

	speed: Convenience field, calculation of distance / duration rounded to one decimal place

	metadata: Metadata related to other annotations

	datasource_names: The names of the data sources used for the speed between each pair of coordinates. lua profile is the default profile, other values are the filenames supplied via --segment-speed-file to osrm-contract or osrm-customize

Example

{
 "distance": [5,5,10,5,5],
 "duration": [15,15,40,15,15],
 "datasources": [1,0,0,0,1],
 "metadata": { "datasource_names": ["traffic","lua profile","lua profile","lua profile","traffic"] },
 "nodes": [49772551,49772552,49786799,49786800,49786801,49786802],
 "weight": [15,15,40,15,15]
}

RouteStep object

A step consists of a maneuver such as a turn or merge, followed
by a distance of travel along a single way to the subsequent
step.

Properties

	distance: The distance of travel from the maneuver to the subsequent step, in float meters.

	duration: The estimated travel time, in float number of seconds.

	geometry: The unsimplified geometry of the route segment, depending on the geometries parameter.

	weight: The calculated weight of the step.

geometry	
————	——————————————————————–
polyline	polyline [https://www.npmjs.com/package/polyline] with precision 5 in [latitude,longitude] encoding
polyline6	polyline [https://www.npmjs.com/package/polyline] with precision 6 in [latitude,longitude] encoding
geojson	GeoJSON LineString [http://geojson.org/geojson-spec.html#linestring]

	name: The name of the way along which travel proceeds.

	ref: A reference number or code for the way. Optionally included, if ref data is available for the given way.

	pronunciation: A string containing an IPA [https://en.wikipedia.org/wiki/International_Phonetic_Alphabet] phonetic transcription indicating how to pronounce the name in the name property. This property is omitted if pronunciation data is unavailable for the step.

	destinations: The destinations of the way. Will be undefined if there are no destinations.

	exits: The exit numbers or names of the way. Will be undefined if there are no exit numbers or names.

	mode: A string signifying the mode of transportation.

	maneuver: A StepManeuver object representing the maneuver.

	intersections: A list of Intersection objects that are passed along the segment, the very first belonging to the StepManeuver

	rotary_name: The name for the rotary. Optionally included, if the step is a rotary and a rotary name is available.

	rotary_pronunciation: The pronunciation hint of the rotary name. Optionally included, if the step is a rotary and a rotary pronunciation is available.

	driving_side: The legal driving side at the location for this step. Either left or right.

Example

{
 "geometry" : "{lu_IypwpAVrAvAdI",
 "mode" : "driving",
 "duration" : 15.6,
 "weight" : 15.6,
 "intersections" : [
 { "bearings" : [10, 92, 184, 270],
 "lanes" : [
 { "indications" : ["left", "straight"],
 "valid" : false },
 { "valid" : true,
 "indications" : ["right"] }
],
 "out" : 2,
 "in" : 3,
 "entry" : ["true", "true", "true", "false"],
 "location" : [13.39677, 52.54366]
 },
 { "out" : 1,
 "lanes" : [
 { "indications" : ["straight"],
 "valid" : true },
 { "indications" : ["right"],
 "valid" : false }
],
 "bearings" : [60, 240, 330],
 "in" : 0,
 "entry" : ["false", "true", "true"],
 "location" : [13.394718, 52.543096]
 }
],
 "name" : "Lortzingstraße",
 "distance" : 152.3,
 "maneuver" : {
 "modifier" : "right",
 "type" : "turn"
 }
}

StepManeuver object

Properties

	location: A [longitude, latitude] pair describing the location of the turn.

	bearing_before: The clockwise angle from true north to the
direction of travel immediately before the maneuver. Range 0-359.

	bearing_after: The clockwise angle from true north to the
direction of travel immediately after the maneuver. Range 0-359.

	type A string indicating the type of maneuver. new identifiers might be introduced without API change
Types unknown to the client should be handled like the turn type, the existence of correct modifier values is guaranteed.

type	Description
——————	————————————————————–
turn	a basic turn into the direction of the modifier
new name	no turn is taken/possible, but the road name changes. The road can take a turn itself, following modifier.
depart	indicates the departure of the leg
arrive	indicates the destination of the leg
merge	merge onto a street (e.g. getting on the highway from a ramp, the modifier specifies the direction of the merge)
ramp	Deprecated. Replaced by on_ramp and off_ramp.
on ramp	take a ramp to enter a highway (direction given my modifier)
off ramp	take a ramp to exit a highway (direction given my modifier)
fork	take the left/right side at a fork depending on modifier
end of road	road ends in a T intersection turn in direction of modifier
use lane	Deprecated replaced by lanes on all intersection entries
continue	Turn in direction of modifier to stay on the same road
roundabout	traverse roundabout, if the route leaves the roundabout there will be an additional property exit for exit counting. The modifier specifies the direction of entering the roundabout.
rotary	a traffic circle. While very similar to a larger version of a roundabout, it does not necessarily follow roundabout rules for right of way. It can offer rotary_name and/or rotary_pronunciation parameters (located in the RouteStep object) in addition to the exit parameter (located on the StepManeuver object).
roundabout turn	Describes a turn at a small roundabout that should be treated as a normal turn. The modifier indicates the turn direction. Example instruction: At the roundabout turn left.
notification	not an actual turn but a change in the driving conditions. For example the travel mode or classes. If the road takes a turn itself, the modifier describes the direction
exit roundabout	Describes a maneuver exiting a roundabout (usually preceded by a roundabout instruction)
exit rotary	Describes the maneuver exiting a rotary (large named roundabout)

Please note that even though there are new name and notification instructions, the mode and name can change
between all instructions. They only offer a fallback in case nothing else is to report.

	modifier An optional string indicating the direction change of the maneuver.

modifier	Description
——————-	——————————————-
uturn	indicates the reversal of direction
sharp right	a sharp right turn
right	a normal turn to the right
slight right	a slight turn to the right
straight	no relevant change in direction
slight left	a slight turn to the left
left	a normal turn to the left
sharp left	a sharp turn to the left

The list of turns without a modifier is limited to: depart/arrive. If the source/target location is close enough to the depart/arrive location, no modifier will be given.

The meaning depends on the type property.

type	Description
————————	———
turn	modifier indicates the change in direction accomplished through the turn
depart/arrive	modifier indicates the position of departure point and arrival point in relation to the current direction of travel

	exit An optional integer indicating the number of the exit to take. The property exists for the roundabout / rotary property:
Number of the roundabout exit to take. If an exit is undefined the destination is on the roundabout.

New properties (potentially depending on type) may be introduced in the future without an API version change.

Lane object

A Lane represents a turn lane at the corresponding turn location.

Properties

	indications: an indication (e.g. marking on the road) specifying the turn lane. A road can have multiple indications (e.g. an arrow pointing straight and left). The indications are given in an array, each containing one of the following types. Further indications might be added on without an API version change.

value	Description
————————	———
none	No dedicated indication is shown.
uturn	An indication signaling the possibility to reverse (i.e. fully bend arrow).
sharp right	An indication indicating a sharp right turn (i.e. strongly bend arrow).
right	An indication indicating a right turn (i.e. bend arrow).
slight right	An indication indicating a slight right turn (i.e. slightly bend arrow).
straight	No dedicated indication is shown (i.e. straight arrow).
slight left	An indication indicating a slight left turn (i.e. slightly bend arrow).
left	An indication indicating a left turn (i.e. bend arrow).
sharp left	An indication indicating a sharp left turn (i.e. strongly bend arrow).

	valid: a boolean flag indicating whether the lane is a valid choice in the current maneuver

Example

{
 "indications": ["left", "straight"],
 "valid": false
}

Intersection object

An intersection gives a full representation of any cross-way the path passes by. For every step, the very first intersection (intersections[0]) corresponds to the
location of the StepManeuver. Further intersections are listed for every cross-way until the next turn instruction.

Properties

	location: A [longitude, latitude] pair describing the location of the turn.

	bearings: A list of bearing values (e.g. [0,90,180,270]) that are available at the intersection. The bearings describe all available roads at the intersection. Values are between 0-359 (0=true north)

	classes: An array of strings signifying the classes (as specified in the profile) of the road exiting the intersection.

	entry: A list of entry flags, corresponding in a 1:1 relationship to the bearings. A value of true indicates that the respective road could be entered on a valid route.
false indicates that the turn onto the respective road would violate a restriction.

	in: index into bearings/entry array. Used to calculate the bearing just before the turn. Namely, the clockwise angle from true north to the
direction of travel immediately before the maneuver/passing the intersection. Bearings are given relative to the intersection. To get the bearing
in the direction of driving, the bearing has to be rotated by a value of 180. The value is not supplied for depart maneuvers.

	out: index into the bearings/entry array. Used to extract the bearing just after the turn. Namely, The clockwise angle from true north to the
direction of travel immediately after the maneuver/passing the intersection. The value is not supplied for arrive maneuvers.

	lanes: Array of Lane objects that denote the available turn lanes at the intersection. If no lane information is available for an intersection, the lanes property will not be present.

Example

{
 "location":[13.394718,52.543096],
 "in":0,
 "out":2,
 "bearings":[60,150,240,330],
 "entry":["false","true","true","true"],
 "classes": ["toll", "restricted"],
 "lanes":{
 "indications": ["left", "straight"],
 "valid": false
 }
}

Waypoint object

The object is used to describe the waypoint on a route.

Properties

	name Name of the street the coordinate snapped to

	location Array that contains the [longitude, latitude] pair of the snapped coordinate

	distance The distance, in meters, from the input coordinate to the snapped coordinate

	hint Unique internal identifier of the segment (ephemeral, not constant over data updates)
This can be used on subsequent requests to significantly speed up the query and to connect multiple services.
E.g. you can use the hint value obtained by the nearest query as hint values for route inputs.

Example

{
 "hint" : "KSoKADRYroqUBAEAEAAAABkAAAAGAAAAAAAAABhnCQCLtwAA_0vMAKlYIQM8TMwArVghAwEAAQH1a66g",
 "distance" : 4.152629,
 "name" : "Friedrichstraße",
 "location" : [
 13.388799,
 52.517033
]
}

Flatbuffers format

The default response format is json, but OSRM supports binary flatbuffers [https://google.github.io/flatbuffers/] format, which
is much faster in serialization/deserialization, comparing to json.

The format itself is described in message descriptors, located at include/engine/api/flatbuffers directory. Those descriptors could
be compiled to provide protocol parsers in Go/Javascript/Typescript/Java/Dart/C#/Python/Lobster/Lua/Rust/PHP/Kotlin. Precompiled
protocol parser for C++ is supplied with OSRM.

Flatbuffers format provides exactly the same data, as json format with a slightly different layout, which was optimized to minimize
in-transfer size.

Root object

Root object is the only object, available from a ‘raw’ flatbuffers buffer. It can be constructed with a following call:

 auto osrm = osrm::engine::api::fbresult::GetFBResult(some_input_buffer);

Properties

	error: bool Marks response as erroneous. An erroneous response should include the code fieldset, all the other fields may not be present.

	code: Error Error description object, only present, when error is true

	waypoints: [Waypoint] Array of Waypoint objects. Should present for every service call, unless skip_waypoints is set to true. Table service will put sources array here.

	routes: [RouteObject] Array of RouteObject objects. May be empty or absent. Should present for Route/Trip/Match services call.

	table: Table Table object, may absent. Should be present in case of Table service call.

Error object

Contains error information.

Properties

	code: string Error code

	message: string Detailed error message

Waypoint object

Almost the same as json Waypoint object. The following properties differ:

	location: Position Same as json location field, but different format.

	nodes: Uint64Pair Same as json nodes field, but different format.

RouteObject object

Almost the same as json Route object. The following properties differ:

	polyline: string Same as json geometry.polyline or geometry.polyline6 fields. One field for both formats.

	coordinates: [Position] Same as json geometry.coordinates field, but different format.

	legs: [Leg] Array of Leg objects.

Leg object

Almost the same as json Leg object. The following properties differ:

	annotations: Annotation Same as json annotation field, but different format.

	steps: [Step] Same as step annotation field, but different format.

Step object

Almost the same as json Step object. The following properties differ:

	polyline: string Same as json geometry.polyline or geometry.polyline6 fields. One field for both formats.

	coordinates: [Position] Same as json geometry.coordinates field, but different format.

	maneuver: StepManeuver Same as json maneuver field, but different format.

type	Description
——————	——
Turn	a basic turn into the direction of the modifier
NewName	no turn is taken/possible, but the road name changes. The road can take a turn itself, following modifier.
Depart	indicates the departure of the leg
Arrive	indicates the destination of the leg
Merge	merge onto a street (e.g. getting on the highway from a ramp, the modifier specifies the direction of the merge)
OnRamp	take a ramp to enter a highway (direction given my modifier)
OffRamp	take a ramp to exit a highway (direction given my modifier)
Fork	take the left/right side at a fork depending on modifier
EndOfRoad	road ends in a T intersection turn in direction of modifier
Continue	Turn in direction of modifier to stay on the same road
Roundabout	traverse roundabout, if the route leaves the roundabout there will be an additional property exit for exit counting. The modifier specifies the direction of entering the roundabout.
Rotary	a traffic circle. While very similar to a larger version of a roundabout, it does not necessarily follow roundabout rules for right of way. It can offer rotary_name and/or rotary_pronunciation parameters (located in the RouteStep object) in addition to the exit parameter (located on the StepManeuver object).
RoundaboutTurn	Describes a turn at a small roundabout that should be treated as a normal turn. The modifier indicates the turn direction. Example instruction: At the roundabout turn left.
Notification	not an actual turn but a change in the driving conditions. For example the travel mode or classes. If the road takes a turn itself, the modifier describes the direction
ExitRoundabout	Describes a maneuver exiting a roundabout (usually preceded by a roundabout instruction)
ExitRotary	Describes the maneuver exiting a rotary (large named roundabout)

	driving_side: bool Ttrue stands for the left side driving.

	intersections: [Intersection] Same as json intersections field, but different format.

Intersection object

Almost the same as json Intersection object. The following properties differ:

	location: Position Same as json location property, but in a different format.

	lanes: [Lane] Array of Lane objects.

Lane object

Almost the same as json Lane object. The following properties differ:

	indications: Turn Array of Turn enum values.

value	Description
————————	———
None	No dedicated indication is shown.
UTurn	An indication signaling the possibility to reverse (i.e. fully bend arrow).
SharpRight	An indication indicating a sharp right turn (i.e. strongly bend arrow).
Right	An indication indicating a right turn (i.e. bend arrow).
SlightRight	An indication indicating a slight right turn (i.e. slightly bend arrow).
Straight	No dedicated indication is shown (i.e. straight arrow).
SlightLeft	An indication indicating a slight left turn (i.e. slightly bend arrow).
Left	An indication indicating a left turn (i.e. bend arrow).
SharpLeft	An indication indicating a sharp left turn (i.e. strongly bend arrow).

StepManeuver object

Almost the same as json StepManeuver object. The following properties differ:

	location: Position Same as json location property, but in a different format.

	type: ManeuverType Type of a maneuver (enum)

type	Description
——————	————————————————————–
Turn	a basic turn into the direction of the modifier
NewName	no turn is taken/possible, but the road name changes. The road can take a turn itself, following modifier.
Depart	indicates the departure of the leg
Arrive	indicates the destination of the leg
Merge	merge onto a street (e.g. getting on the highway from a ramp, the modifier specifies the direction of the merge)
OnRamp	take a ramp to enter a highway (direction given my modifier)
OffRamp	take a ramp to exit a highway (direction given my modifier)
Fork	take the left/right side at a fork depending on modifier
EndOfRoad	road ends in a T intersection turn in direction of modifier
Continue	Turn in direction of modifier to stay on the same road
Roundabout	traverse roundabout, if the route leaves the roundabout there will be an additional property exit for exit counting. The modifier specifies the direction of entering the roundabout.
Rotary	a traffic circle. While very similar to a larger version of a roundabout, it does not necessarily follow roundabout rules for right of way. It can offer rotary_name and/or rotary_pronunciation parameters (located in the RouteStep object) in addition to the exit parameter (located on the StepManeuver object).
RoundaboutTurn	Describes a turn at a small roundabout that should be treated as a normal turn. The modifier indicates the turn direction. Example instruction: At the roundabout turn left.
Notification	not an actual turn but a change in the driving conditions. For example the travel mode or classes. If the road takes a turn itself, the modifier describes the direction
ExitRoundabout	Describes a maneuver exiting a roundabout (usually preceded by a roundabout instruction)
ExitRotary	Describes the maneuver exiting a rotary (large named roundabout)

	modifier: Turn Maneuver turn (enum)

Annotation object

Exactly the same as json annotation object.

Position object

A point on Earth.

Properties

	longitute: float Point’s longitude

	latitude: float Point’s latitude

Uint64Pair

A pair of long long integers. Used only by Waypoint object.

Properties

	first: uint64 First pair value.

	second: uint64 Second pair value.

Table object

Almost the same as json Table object. The main difference is that ‘sources’ field is absent and the root’s object ‘waypoints’ field is
used instead. All the other differences follow:

	durations: [float] Flat representation of a durations matrix. Element at row;col can be addressed as [row * cols + col]

	distances: [float] Flat representation of a destinations matrix. Element at row;col can be addressed as [row * cols + col]

	destinations: [Waypoint] Array of Waypoint objects. Will be null if skip_waypoints will be set to true

	rows: ushort Number of rows in durations/destinations matrices.

	cols: ushort Number of cols in durations/destinations matrices.

Introduction

OSRM can be used as a library (libosrm) via C++ instead of using it through the HTTP interface and osrm-routed. This allows for fine-tuning OSRM and has much less overhead. Here is a quick introduction into how to use libosrm in the upcoming v5 release.

Take a look at the example code that lives in the example directory [https://github.com/Project-OSRM/osrm-backend/tree/master/example]. Here is all you ever wanted to know about libosrm, that is a short description of what the types do and where to find documentation on it:

Important interface objects

	EngineConfig [https://github.com/Project-OSRM/osrm-backend/blob/master/include/engine/engine_config.hpp] - for initializing an OSRM instance we can configure certain properties and constraints. E.g. the storage config is the base path such as france.osm.osrm from which we derive and load france.osm.osrm.* auxiliary files. This also lets you set constraints such as the maximum number of locations allowed for specific services.

	OSRM [https://github.com/Project-OSRM/osrm-backend/blob/master/include/osrm/osrm.hpp] - this is the main Routing Machine type with functions such as Route and Table. You initialize it with a EngineConfig. It does all the heavy lifting for you. Each function takes its own parameters, e.g. the Route function takes RouteParameters, and a out-reference to a JSON result that gets filled. The return value is a Status, indicating error or success.

	Status [https://github.com/Project-OSRM/osrm-backend/blob/master/include/engine/status.hpp] - this is a type wrapping Error or Ok for indicating error or success, respectively.

	TableParameters [https://github.com/Project-OSRM/osrm-backend/blob/master/include/engine/api/table_parameters.hpp] - this is an example of parameter types the Routing Machine functions expect. In this case Table expects its own parameters as TableParameters. You can see it wrapping two vectors, sources and destinations — these are indices into your coordinates for the table service to construct a matrix from (empty sources or destinations means: use all of them). If you ask yourself where coordinates come from, you can see TableParameters inheriting from BaseParameters.

	BaseParameter [https://github.com/Project-OSRM/osrm-backend/blob/master/include/engine/api/base_parameters.hpp] - this most importantly holds coordinates (and a few other optional properties that you don’t need for basic usage); the specific parameter types inherit from BaseParameters to get these member attributes. That means your TableParameters type has coordinates, sources and destination member attributes (and a few other that we ignore for now).

	Coordinate [https://github.com/Project-OSRM/osrm-backend/blob/master/include/util/coordinate.hpp] - this is a wrapper around a (longitude, latitude) pair. We really don’t care about (lon,lat) vs (lat, lon) but we don’t want you to accidentally mix them up, so both latitude and longitude are strictly typed wrappers around integers (fixed notation such as 13423240) and floating points (floating notation such as 13.42324).

	Parameters for other services [https://github.com/Project-OSRM/osrm-backend/tree/master/include/engine/api] - here are all other *Parameters you need for other Routing Machine services.

	JSON [https://github.com/Project-OSRM/osrm-backend/blob/master/include/util/json_container.hpp] - this is a sum type resembling JSON. The Routing Machine service functions take a out-ref to a JSON result and fill it accordingly. It is currently implemented using mapbox/variant [https://github.com/mapbox/variant] which is similar to Boost.Variant [http://www.boost.org/doc/libs/1_55_0/doc/html/variant.html]. There are two ways to work with this sum type: either provide a visitor that acts on each type on visitation or use the get function in case you’re sure about the structure. The JSON structure is written down in the HTTP API.

Example

See the example folder [https://github.com/Project-OSRM/osrm-backend/tree/master/example] in the OSRM repository.

Workflow

	Create an OSRM instance initialized with a EngineConfig

	Call the service function on the OSRM object providing service specific *Parameters

	Check the return code and use the JSON result

OSRM profiles

OSRM supports “profiles”. Profiles representing routing behavior for different transport modes like car, bike and foot. You can also create profiles for variations like a fastest/shortest car profile or fastest/safest/greenest bicycles profile.

A profile describes whether or not it’s possible to route along a particular type of way, whether we can pass a particular node, and how quickly we’ll be traveling when we do. This feeds into the way the routing graph is created and thus influences the output routes.

Available profiles

Out-of-the-box OSRM comes with profiles for car, bicycle and foot. You can easily modify these or create new ones if you like.

Profiles have a ‘lua’ extension, and are placed in ‘profiles’ directory.

When running OSRM preprocessing commands you specify the profile with the –profile (or the shorthand -p) option, for example:

osrm-extract --profile ../profiles/car.lua planet-latest.osm.pbf

Processing flow

It’s important to understand that profiles are used when preprocessing the OSM data, NOT at query time when routes are computed.

This means that after modifying a profile you will need to extract, contract and reload the data again and to see changes in the routing results. See Processing Flow [https://github.com/Project-OSRM/osrm-backend/wiki/Processing-Flow] for more.

Profiles are written in Lua

Profiles are not just configuration files. They are scripts written in the Lua scripting language [http://www.lua.org]. The reason for this is that OpenStreetMap data is complex, and it’s not possible to simply define tag mappings. Lua scripting offers a powerful way to handle all the possible tag combinations found in OpenStreetMap nodes and ways.

Basic structure of profiles

A profile will process every node and way in the OSM input data to determine what ways are routable in which direction, at what speed, etc.

A profile will typically:

	Define api version (required)

	Require library files (optional)

	Define setup function (required)

	Define process functions (some are required)

	Return functions table (required)

A profile can also define various local functions it needs.

Looking at car.lua as an example, at the top of the file the api version is defined and then required library files are included.

Then follows the setup function, which is called once when the profile is loaded. It returns a big hash table of configurations, specifying things like what speed to use for different way types. The configurations are used later in the various processing functions. Many adjustments can be done just by modifying this configuration table.

The setup function is also where you can do other setup, like loading an elevation data source if you want to consider that when processing ways.

Then come the process_node and process_way functions, which are called for each OSM node and way when extracting OpenStreetMap data with osrm-extract.

The process_turn function processes every possible turn in the network, and sets a penalty depending on the angle and turn of the movement.

Profiles can also define a process_segment function to handle differences in speed along an OSM way, for example to handle elevation. As you can see, this is not currently used in the car profile.

At the end of the file, a table is returned with references to the setup and processing functions the profile has defined.

Understanding speed, weight and rate

When computing a route from A to B there can be different measures of what is the best route. That’s why there’s a need for different profiles.

Because speeds vary on different types of roads, the shortest and the fastest route are typically different. But there are many other possible preferences. For example a user might prefer a bicycle route that follow parks or other green areas, even though both duration and distance are a bit longer.

To handle this, OSRM doesn’t simply choose the ways with the highest speed. Instead it uses the concepts of weight and rate. The rate is an abstract measure that you can assign to ways as you like to make some ways preferable to others. Routing will prefer ways with high rate.

The weight of a way is normally computed as length / rate. The weight can be thought of as the resistance or cost when passing the way. Routing will prefer ways with low weight.

You can also set the weight of a way to a fixed value. In this case it’s not calculated based on the length or rate, and the rate is ignored.

You should set the speed to your best estimate of the actual speed that will be used on a particular way. This will result in the best estimated travel times.

If you want to prefer certain ways due to other factors than the speed, adjust the rate accordingly. If you adjust the speed, the time estimation will be skewed.

If you set the same rate on all ways, the result will be shortest path routing.
If you set rate = speed on all ways, the result will be fastest path routing.
If you want to prioritize certain streets, increase the rate on these.

Elements

api_version

A profile should set api_version at the top of your profile. This is done to ensure that older profiles are still supported when the api changes. If api_version is not defined, 0 will be assumed. The current api version is 4.

Library files

The folder profiles/lib/ contains LUA library files for handling many common processing tasks.

File | Notes
——————|——————————
way_handlers.lua | Functions for processing way tags
tags.lua | Functions for general parsing of OSM tags
set.lua | Defines the Set helper for handling sets of values
sequence.lua | Defines the Sequence helper for handling sequences of values
access.lua | Function for finding relevant access tags
destination.lua | Function for finding relevant destination tags
maxspeed.lua | Function for determining maximum speed
guidance.lua | Function for processing guidance attributes

They all return a table of functions when you use require to load them. You can either store this table and reference its functions later, or if you need only a single function you can store that directly.

setup()

The setup function is called once when the profile is loaded and must return a table of configurations. It’s also where you can do other global setup, like loading data sources that are used during processing.

Note that processing of data is parallelized and several unconnected LUA interpreters will be running at the same time. The setup function will be called once for each. Each LUA interpreter will have its own set of globals.

The following global properties can be set under properties in the hash you return in the setup function:

Attribute | Type | Notes
————————————-|———-|—————————————————————————-
weight_name | String | Name used in output for the routing weight property (default 'duration')
weight_precision | Unsigned | Decimal precision of edge weights (default 1)
left_hand_driving | Boolean | Are vehicles assumed to drive on the left? (used in guidance, default false)
use_turn_restrictions | Boolean | Are turn restrictions followed? (default false)
continue_straight_at_waypoint | Boolean | Must the route continue straight on at a via point, or are U-turns allowed? (default true)
max_speed_for_map_matching | Float | Maximum vehicle speed to be assumed in matching (in m/s)
max_turn_weight | Float | Maximum turn penalty weight
force_split_edges | Boolean | True value forces a split of forward and backward edges of extracted ways and guarantees that process_segment will be called for all segments (default false)

The following additional global properties can be set in the hash you return in the setup function:

Attribute | Type | Notes
————————————-|——————|—————————————————————————-
excludable | Sequence of Sets | Determines which class-combinations are supported by the exclude option at query time. E.g. Sequence{Set{"ferry", "motorway"}, Set{"motorway"}} will allow you to exclude ferries and motorways, or only motorways.
classes | Sequence | Determines the allowed classes that can be referenced using {forward,backward}_classes on the way in the process_way function.
restrictions | Sequence | Determines which turn restrictions will be used for this profile.
suffix_list | Set | List of name suffixes needed for determining if “Highway 101 NW” the same road as “Highway 101 ES”.
relation_types | Sequence | Determines wich relations should be cached for processing in this profile. It contains relations types

process_node(profile, node, result, relations)

Process an OSM node to determine whether this node is a barrier or can be passed and whether passing it incurs a delay.

Argument | Description
———|——————————————————-
profile | The configuration table you returned in setup.
node | The input node to process (read-only).
result | The output that you will modify.
relations| Storage of relations to access relations, where node is a member.

The following attributes can be set on result:

Attribute | Type | Notes
—————-|———|———————————————————
barrier | Boolean | Is it an impassable barrier?
traffic_lights | Boolean | Is it a traffic light (incurs delay in process_turn)?

process_way(profile, way, result, relations)

Given an OpenStreetMap way, the process_way function will either return nothing (meaning we are not going to route over this way at all), or it will set up a result hash.

Argument | Description
———|——————————————————-
profile | The configuration table you returned in setup.
way | The input way to process (read-only).
result | The output that you will modify.
relations| Storage of relations to access relations, where way is a member.

Importantly it will set result.forward_mode and result.backward_mode to indicate the travel mode in each direction, as well as set result.forward_speed and result.backward_speed to integer values representing the speed for traversing the way.

It will also set a number of other attributes on result.

Using the power of the scripting language you wouldn’t typically see something as simple as a result.forward_speed = 20 line within the process_way function. Instead process_way will examine the tag set on the way, process this information in various ways, calling other local functions and referencing the configuration in profile, etc., before arriving at the result.

The following attributes can be set on the result in process_way:

Attribute | Type | Notes
—————————————-|———-|————————————————————————–
forward_speed | Float | Speed on this way in km/h. Mandatory.
backward_speed | Float | “”
forward_rate | Float | Routing weight, expressed as meters/weight (e.g. for a fastest-route weighting, you would want this to be meters/second, so set it to forward_speed/3.6)
backward_rate | Float | “”
forward_mode | Enum | Mode of travel (e.g. car, ferry). Mandatory. Defined in include/extractor/travel_mode.hpp.
backward_mode | Enum | “”
forward_classes | Table | Mark this way as being of a specific class, e.g. result.classes["toll"] = true. This will be exposed in the API as classes on each RouteStep.
backward_classes | Table | “”
duration | Float | Alternative setter for duration of the whole way in both directions
weight | Float | Alternative setter for weight of the whole way in both directions
turn_lanes_forward | String | Directions for individual lanes (normalized OSM turn:lanes value)
turn_lanes_backward | String | “”
forward_restricted | Boolean | Is this a restricted access road? (e.g. private, or deliveries only; used to enable high turn penalty, so that way is only chosen for start/end of route)
backward_restricted | Boolean | “”
is_startpoint | Boolean | Can a journey start on this way? (e.g. ferry; if false, prevents snapping the start point to this way)
roundabout | Boolean | Is this part of a roundabout?
circular | Boolean | Is this part of a non-roundabout circular junction?
name | String | Name of the way
ref | String | Road number (equal to set forward_ref and backward_ref with one value)
forward_ref | String | Road number in forward way direction
backward_ref | String | Road number in backward way direction
destinations | String | The road’s destinations
exits | String | The ramp’s exit numbers or names
pronunciation | String | Name pronunciation
road_classification.motorway_class | Boolean | Guidance: way is a motorway
road_classification.link_class | Boolean | Guidance: way is a slip/link road
road_classification.road_priority_class | Enum | Guidance: order in priority list. Defined in include/extractor/road_classification.hpp
road_classification.may_be_ignored | Boolean | Guidance: way is non-highway
road_classification.num_lanes | Unsigned | Guidance: total number of lanes in way

process_segment(profile, segment)

The process_segment function is called for every segment of OSM ways. A segment is a straight line between two OSM nodes.

On OpenStreetMap way cannot have different tags on different parts of a way. Instead you would split the way into several smaller ways. However many ways are long. For example, many ways pass hills without any change in tags.

Processing each segment of an OSM way makes it possible to have different speeds on different parts of a way based on external data like data about elevation, pollution, noise or scenic value and adjust weight and duration of the segment accordingly.

In the process_segment function you don’t have access to OSM tags. Instead you use the geographical location of the start and end point of the way to look up information from another data source, like elevation data. See rasterbot.lua for an example.

The following attributes can be read and set on the result in process_segment:

Attribute | Read/write? | Type | Notes
——————-|————-|———|—————————————-
source.lon | Read | Float | Co-ordinates of segment start
source.lat | Read | Float | “”
target.lon | Read | Float | Co-ordinates of segment end
target.lat | Read | Float | “”
distance | Read | Float | Length of segment
weight | Read/write | Float | Routing weight for this segment
duration | Read/write | Float | Duration for this segment

process_turn(profile, turn)

The process_turn function is called for every possible turn in the network. Based on the angle and type of turn you assign the weight and duration of the movement.

The following attributes can be read and set on the result in process_turn:

Attribute | Read/write? | Type | Notes
——————— | ————- | ——— | ——————————————————
angle | Read | Float | Angle of turn in degrees ([-179, 180]: 0=straight, 180=u turn, +x=x degrees to the right, -x= x degrees to the left)
number_of_roads | Read | Integer | Number of ways at the intersection of the turn
is_u_turn | Read | Boolean | Is the turn a u-turn?
has_traffic_light | Read | Boolean | Is a traffic light present at this turn?
is_left_hand_driving | Read | Boolean | Is left-hand traffic?
source_restricted | Read | Boolean | Is it from a restricted access road? (See definition in process_way)
source_mode | Read | Enum | Travel mode before the turn. Defined in include/extractor/travel_mode.hpp
source_is_motorway | Read | Boolean | Is the source road a motorway?
source_is_link | Read | Boolean | Is the source road a link?
source_number_of_lanes | Read | Integer | How many lanes does the source road have? (default when not tagged: 0)
source_highway_turn_classification | Read | Integer | Classification based on highway tag defined by user during setup. (default when not set: 0, allowed classification values are: 0-15))
source_access_turn_classification | Read | Integer | Classification based on access tag defined by user during setup. (default when not set: 0, allowed classification values are: 0-15))
source_speed | Read | Integer | Speed on this source road in km/h
source_priority_class | Read | Enum | The type of road priority class of the source. Defined in include/extractor/road_classification.hpp
target_restricted | Read | Boolean | Is the target a restricted access road? (See definition in process_way)
target_mode | Read | Enum | Travel mode after the turn. Defined in include/extractor/travel_mode.hpp
target_is_motorway | Read | Boolean | Is the target road a motorway?
target_is_link | Read | Boolean | Is the target road a link?
target_number_of_lanes | Read | Integer | How many lanes does the target road have? (default when not tagged: 0)
target_highway_turn_classification | Read | Integer | Classification based on highway tag defined by user during setup. (default when not set: 0, allowed classification values are: 0-15))
target_access_turn_classification | Read | Integer | Classification based on access tag defined by user during setup. (default when not set: 0, allowed classification values are: 0-15))
target_speed | Read | Integer | Speed on this target road in km/h
target_priority_class | Read | Enum | The type of road priority class of the target. Defined in include/extractor/road_classification.hpp
roads_on_the_right | Read | Vector | Vector with information about other roads on the right of the turn that are also connected at the intersection
roads_on_the_left | Read | Vector | Vector with information about other roads on the left of the turn that are also connected at the intersection. If turn is a u turn, this is empty.
weight | Read/write | Float | Penalty to be applied for this turn (routing weight)
duration | Read/write | Float | Penalty to be applied for this turn (duration in deciseconds)

 Releasing a new OSRM version

Releasing a new OSRM version

We are using http://semver.org/ for versioning with major, minor and patch versions.

Guarantees

We are giving the following guarantees between versions:

Major version change

	There are no guarantees about compatiblity of APIs or datasets

	Breaking changes will be noted as BREAKING in the changelog

Minor version change

We may introduce forward-compatible changes: query parameters and response properties may be added in responses, but existing properties may not be changed or removed. One exception to this is the addition of new turn types, which we see as forward-compatible changes.

	Forward-compatible HTTP API

	Forward-compatible C++ library API

	Forward-compatible node-osrm API

	No compatiblity between OSRM datasets (needs new processing)

Patch version change

	No change of query parameters or response formats

	Compatible HTTP API

	Compatible C++ library API

	Compatible node-osrm API

	Compatible OSRM datasets

Release and branch management

	The master branch is for the bleeding edge development

	We create and maintain release branches x.y to control the release flow

	We create the release branch once we create release branches once we want to release the first RC

	RCs go in the release branch, commits needs to be cherry-picked from master

	No minor or major version will be released without a code-equal release candidates

	For quality assurance, release candidates need to be staged beforing tagging a final release

	Patch versions may be released without a release candidate

	We may backport fixes to older versions and release them as patch versions

Releasing a version

	Check out the appropriate release branch x.y

	Make sure CHANGELOG.md is up to date.

	Make sure the package.json on branch x.y has been committed.

	Make sure all tests are passing (e.g. Travis CI gives you a :green_apple:)

	Use an annotated tag to mark the release: git tag vx.y.z -a Body of the tag description should be the changelog entries. Commit should be one in which the package.json version matches the version you want to release.

	Use npm run docs to generate the API documentation. Copy build/docs/* to https://github.com/Project-OSRM/project-osrm.github.com in the docs/vN.N.N/api directory

	Push tags and commits: git push; git push --tags

	On https://github.com/Project-OSRM/osrm-backend/releases press Draft a new release,
write the release tag vx.y.z in the Tag version field, write the changelog entries in the Describe this release field
and press Publish release. Note that Travis deployments will create a release when publishing node binaries, so the release
may already exist. In which case the description should be updated with the changelog entries.

	If not a release-candidate: Write a mailing-list post to osrm-talk@openstreetmap.org to announce the release

	Wait until the travis build has been completed and check if the node binaries were published by doing:
rm -rf node_modules && npm install locally.

	For final releases run npm publish or npm publish --tag next for release candidates.

	Bump version in package.json to {MAJOR}.{MINOR+1}.0-latest.1 on the master branch after the release.

 Environment Variables

Environment Variables

SIGNAL_PARENT_WHEN_READY

If the SIGNAL_PARENT_WHEN_READY environment variable is set osrm-routed will
send the USR1 signal to its parent when it will be running and waiting for
requests. This could be used to upgrade osrm-routed to a new binary on the fly
without any service downtime - no incoming requests will be lost.

DISABLE_ACCESS_LOGGING

If the DISABLE_ACCESS_LOGGING environment variable is set osrm-routed will
not log any http requests to standard output. This can be useful in high
traffic setup.

 Testsuite

Testsuite

OSRM comes with a testsuite containing both unit-tests using the Boost library and cucumber.js for scenario driven testing.

Unit Tests

For a general introduction on Boost.Test have a look at its docs [http://www.boost.org/doc/libs/1_60_0/libs/test/doc/html/index.html].

Separate Test Binaries

Unit tests should be registered according to the sub-project they’re in.
If you want to write tests for utility functions, add them to the utility test binary.
See CMakeLists.txt in the unit test directory for how to register new unit tests.

Using Boost.Test Primitives

There is a difference between only reporting a failed condition and aborting the test right at a failed condition.
Have a look at BOOST_CHECK vs BOOST_REQUIRE [http://www.boost.org/doc/libs/1_60_0/libs/test/doc/html/boost_test/utf_reference/testing_tool_ref/assertion_boost_level.html].
Instead of manually checking e.g. for equality, less than, if a function throws etc. use their corresponding Boost.Test primitives [http://www.boost.org/doc/libs/1_60_0/libs/test/doc/html/boost_test/utf_reference/testing_tool_ref.html].

If you use BOOST_CHECK_EQUAL you have to implement operator<< for your type so that Boost.Test can print mismatches.
If you do not want to do this, define BOOST_TEST_DONT_PRINT_LOG_VALUE (and undef it after the check call) or sidestep it with BOOST_CHECK(fst == snd);.

Test Fixture

If you need to test features on a real dataset (think about this twice: prefer cucumber and dataset-independent tests for their reproducibility and minimality), there is a fixed dataset in test/data.
This dataset is a small extract and may not even contain all tags or edge cases.
Furthermore this dataset is not in sync with what you see in up-to-date OSM maps or on the demo server.
See the library tests for how to add new dataset dependent tests.

To prepare the test data simply cd test/data/ and then run make.

Running Tests

To build the unit tests:

cd build
cmake ..
make tests

You should see the compiled binaries in build/unit_tests, you can then run each suite individually:

./engine-tests

Cucumber

For a general introduction on cucumber in our testsuite, have a look at the wiki [https://github.com/Project-OSRM/osrm-backend/wiki/Cucumber-Test-Suite].

This documentation aims to supply a guideline on how to write cucumber tests that test new features introduced into osrm.

Test the feature

It is often tempting to reduce the test to a path and accompanying instructions. Instructions can and will change over the course of improving guidance.

Instructions should only be used when writing a feature located in features/guidance. All other features should avoid using instructions at all.

Write Tests to Scale

OSRM is a navigation engine. Tests should always consider this background.

An important implication is the grid size. If tests use a very small grid size, you run into the chance of instructions being omitted.
For example:

Background:
 Given the profile "car"
 Given a grid size of 10 meters

Scenario: Testbot - Straight Road
 Given the node map
 """
 a b c d
 """

 And the ways
 | nodes | highway |
 | ab | primary |
 | bc | primary |
 | cd | primary |

 When I route I should get
 | from | to | route |
 | a | d | ab,bc,cd,cd |

In a navigation engine, the instructions

	depart east on ab

	in 10 meters the road name changes to bc

	in 10 meters the road name changes to cd

	you arrived at cd

would be impossible to announce and not helpful at all.
Since no actual choices exist, the route you get could result in ab,cd and simply say depart and arrive.

To prevent such surprises, always consider the availability of other roads and use grid sizes/road lengths that correspond to actually reasonable scenarios in a road network.

Use names

If you specify many nodes in close succession to present a specific road geometry, consider using name to indicate to OSRM that the segment is a single road.

Background:
 Given the profile "car"
 Given a grid size of 10 meters

Scenario: Testbot - Straight Road
 Given the node map
 """
 a b c d
 """

 And the ways
 | nodes | highway | name |
 | ab | primary | road |
 | bc | primary | road |
 | cd | primary | road |

 When I route I should get
 | from | to | route | turns |
 | a | d | road,road | depart,arrive |

Guidance guarantees only essential maneuvers. You will always see depart and arrive as well as all turns that are not obvious.

So the following scenario does not change the instructions

Background:
 Given the profile "car"
 Given a grid size of 10 meters

Scenario: Testbot - Straight Road
 Given the node map
 """
 a b
 d c
 """

 And the ways
 | nodes | highway | name |
 | ab | primary | road |
 | bc | primary | road |
 | cd | primary | road |

 When I route I should get
 | from | to | route | turns |
 | a | d | road,road | depart,arrive |

but if we modify it to

Background:
 Given the profile "car"
 Given a grid size of 10 meters

Scenario: Testbot - Straight Road
 Given the node map
 """
 a b e
 d c
 """

 And the ways
 | nodes | highway | name |
 | ab | primary | road |
 | bc | primary | road |
 | cd | primary | road |
 | be | primary | turn |

 When I route I should get
 | from | to | route | turns |
 | a | d | road,road,road | depart,continue right,arrive |

Test all directions

Modelling a road as roundabout has an implied oneway tag associated with it. In the following case, we can route from a to d but not from d to a.
To discover those errors, make sure to check for all allowed directions.

Scenario: Enter and Exit mini roundabout with sharp angle # features/guidance/mini-roundabout.feature:37
 Given the profile "car" # features/step_definitions/data.js:8
 Given a grid size of 10 meters # features/step_definitions/data.js:20
 Given the node map # features/step_definitions/data.js:45
 """
 a b
 c d
 """
 And the ways # features/step_definitions/data.js:128
 | nodes | highway | name |
 | ab | tertiary | MySt |
 | bc | roundabout | |
 | cd | tertiary | MySt |
 When I route I should get # features/step_definitions/routing.js:4
 | from | to | route | turns | # |
 | a | d | MySt,MySt | depart,arrive | # suppress multiple enter/exit mini roundabouts |
 | d | a | MySt,MySt | depart,arrive | # suppress multiple enter/exit mini roundabouts |
 Tables were not identical:
 | from | to | route | turns | #
 | a | d | MySt,MySt | depart,arrive | # suppress multiple enter/exit mini roundabouts |
 | (-) d | (-) a | (-) MySt,MySt | (-) depart,arrive | (-) # suppress multiple enter/exit mini roundabouts |
 | (+) d | (+) a | (+) | (+) | (+) # suppress multiple enter/exit mini roundabouts |

Prevent Randomness

Some features in OSRM can result in strange experiences during testcases. To prevent some of these issues, follow the guidelines below.

Use Waypoints

Using grid nodes as waypoints offers the chance of unwanted side effects.
OSRM converts the grid into a so called edge-based graph.

Scenario: Testbot - Intersection
 Given the node map
 """
 e
 b a d
 c
 """

 And the ways
 | nodes | highway | oneway |
 | ab | primary | yes |
 | ac | primary | yes |
 | ad | primary | yes |
 | ae | primary | yes |

Selecting a as a waypoint results in four possible starting locations. Which one of the routes a,b, a,c, a,d, or a,e is found is pure chance and depends on the order in the static r-tree.

To guarantee discovery, use:

Scenario: Testbot - Intersection
 Given the node map
 """
 e
 4
 b 1 a 3 d
 2
 c
 """

 And the ways
 | nodes | highway | oneway |
 | ab | primary | yes |
 | ac | primary | yes |
 | ad | primary | yes |
 | ae | primary | yes |

And use 1,2,3, and 4 as starting waypoints. The routes 1,b, 2,c, 3,d, and 4,e can all be discovered.

Allow For Small Offsets

Whenever you are independent of the start location (see use waypoints), the waypoint chosen as start/end location can still influence distances/durations.

If you are testing for a duration metric, allow for a tiny offset to ensure a passing test in the presence of rounding/snapping issues.

Don’t Rely on Alternatives

Alternative route discovery is a random feature in itself. The discovery of routes depends on the contraction order of roads and cannot be assumed successful, ever.

Understanding Turn Restrictions

Adding turn restrictions requires the restriction to follow a very specific format.

We specify them in a table with the header | type | way:from | way:to | node:via | restriction |.
It is important that turn restrictions require micro segmentation.

Consider the following scenario:

Given the node map:
 """
 e
 |
 a - - b - - c
 |
 d
 """

And the ways
 | nodes | oneway |
 | abc | yes |
 | ebd | yes |

And the relations
 | type | way:from | way:to | node:via | restriction |
 | restriction | abc | ebd | b | no_right_turn |

The setting looks perfectly fine at first glance. However, it is not well defined.
The forbidden right turn could be either a superfluous addition, forbidding the turn cb to be, or actually refer to the turn ab to bd to say that a turn is forbidden here.

To model turn-restrictions correctly and unique, we need to split segments that contribute to the restriction into the smallest possible parts.
E.g. the above scenario could correctly be expressed as:

Given the node map:
 """
 e
 |
 a - - b - - c
 |
 d
 """

And the ways
 | nodes | oneway | name |
 | ab | yes | abc |
 | bc | yes | abc |
 | eb | yes | ebd |
 | bd | yes | ebd |

And the relations
 | type | way:from | way:to | node:via | restriction |
 | restriction | ab | bd | b | no_right_turn |

Unless this format is used, OSRM will omit the (then ambiguous) turn restrictions and ignore them.

My Guidance Tests are Failing - Understanding what you can change

If you change some stuff in guidance, you will easily see tests change their result. E.g. if you change the angles for which we report right, then obviously some tests might not report a direction modifier named right anymore.

This small section will try to guide you in making the correct decisions for changing the behaviour of tests.

The difficulty in guidance tests is that not all items can be translated 1:1 from the ascii art into turn-angles.

The turn-angle calculation tries to find turn angles that would represent perceived turn angles, not the exact angle at the connection.

This is necessary, since connections in OSM are always bound by the paradigm that the way is supposed to be in the middle of the actual road.
For broad streets, you will see stronger angles than the actual turns.

Don’t change the test, change the expected behaviour

If we have a test that looks like this:

Given a grid size of 5 m
Given the node map
"""
a - b - - - - - - c
 \
 d - - - - - e
"""

When I route I should get
 | waypoints | route | turns |
 | a,e | abc,bde,bde | depart,turn slight right,arrive|

And the test reports turn right for the route a->e, where before it said slight right.

If you changed the turn angles, obviously you can expect changes in the distinction between slight right and right.
In such a case it is, of course, reasonable to change the expected route to report right instead of slight right. You should consider inspecting the actual turn angles at b to see if you feel that change is justified.

However, you should never adjust the test itself.
If you look at a failure, the other way around

Given a grid size of 5 m
Given the node map
"""
a - b - - - - - - c
 \
 d - - - - - e
"""

When I route I should get
 | waypoints | route | turns |
 | a,e | abc,bde,bde | depart,turn right,arrive|

where we see a slight right, over the expected right.
We could be tempted to adjust the grid size (e.g. from 10 m to 20 meters).

Such a change would fundamentally alter the tests, though.
Since the part b-d is a short offset, when we are looking at a grid of size 5 m, the angle calculation will try and compensate for this offset.

In this case we would see a very slight turn angle. If your change now reports different turn angles, you can of course change the expected result. But you should not adjust the grid size. The test would be testing turn angles of 180 and 100 degrees, instead of 180 and 160.

Consider Post-Processing Impacts

Some changes you might see could look completely unrelated. To understand the impact of your changes, you can make use of the debugging utilities you can finde in util/debug.hpp (and potentially other related headers).

If your test is inspecting a series of turns (remember, a turn not necessarily equals an instruction), you could see interaction with post-processing.
To see the unprocessed turns, you should print the steps at the end of step assembly (assembleSteps in engine/guidance/assemble_steps.hpp).

If you see unexpected changes, you can consider adding the locations field to your test to study what location a turn is reported at.

To study a test without post-processing impacts, you can create a copy of the case on a very large grid (like 2000 meters). In such a grid, turn collapsing would be essentially disable.

Sadly, there is no general guideline.

Use Caution

If in doubt, ask another person. Inspect as much of the data as possible (e.g. print un-collapsed steps, turn angles and so on) and use your best judgement, if the new result seems justified.

 Building OSRM for Windows

Building OSRM for Windows

Dependencies

Get a decent Windows with decent Visual Studio (14 at least for C++11 support). The published binaries are build with
VS2019 and Windows SDK8.1.

In case you are using prepacked Windows VM with VS2019 [https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/], you
have to install Windows SDK 8.1 [https://go.microsoft.com/fwlink/p/?LinkId=323507]

Prepare directories for dependencies, build and target file location.Target directory ($target starting from that moment) should have /include and /lib subdirectories.

Bzip2

	Download from https://sourceware.org/pub/bzip2/bzip2-1.0.8.tar.gz

	Start ‘x64 Native Tools Command Prompt for VS2019’ and change directory to unpacked source tree.

	Issue nmake /f makefile.msc

	Copy bzlib.h to $target\include and libbz2.lib to $target\lib

ZLib

	Download https://www.zlib.net/zlib-1.2.11.tar.gz

	Start ‘x64 Native Tools Command Prompt for VS2019’ and change directory to unpacked source tree.

	Switch to contrib\vstudio\vc14

	If needed, open zlibvc.sln with Visual Studio and retarget to your version of compiler and SDK.

	Issue msbuild zlibvc.sln /p:BuildInParallel=true /p:Configuration=Release /p:Platform=x64 /m:<Number of cpu cores>

	Copy x64\ZlibStatRelease\zlibstat.lib to $target\lib\libz.lib, copy zlib.h and zconf.h to $target\include

ICU

	Download and unpack.

	https://github.com/unicode-org/icu/releases/download/release-66-1/icu4c-66_1-src.zip

	https://github.com/unicode-org/icu/releases/download/release-66-1/icu4c-66_1-data.zip

	Do retarget if neededby openinig .\source\allinone\allinone.sln and editing projects

	Start ‘x64 Native Tools Command Prompt for VS2019’ and change directory to unpacked source tree.

	Run build:
msbuild .\source\allinone\allinone.sln /nologo /p:BuildInParallel=true /p:Configuration=Release /p:Platform=x64 /m:

 OSRM

OSRM

The OSRM method is the main constructor for creating an OSRM instance.
An OSRM instance requires a .osrm dataset, which is prepared by the OSRM toolchain.
You can create such a .osrm file by running the OSRM binaries we ship in node_modules/osrm/lib/binding/ and default
profiles (e.g. for setting speeds and determining road types to route on) in node_modules/osrm/profiles/:

node_modules/osrm/lib/binding/osrm-extract data.osm.pbf -p node_modules/osrm/profiles/car.lua
node_modules/osrm/lib/binding/osrm-contract data.osrm

Consult the osrm-backend [https://github.com/Project-OSRM/osrm-backend] documentation for further details.

Once you have a complete network.osrm file, you can calculate routes in javascript with this object.

var osrm = new OSRM('network.osrm');

Parameters

	options (Object [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object] | String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String]) Options for creating an OSRM object or string to the .osrm file. (optional, default {shared_memory:true})

	options.algorithm String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String]? The algorithm to use for routing. Can be ‘CH’, ‘CoreCH’ or ‘MLD’. Default is ‘CH’.
Make sure you prepared the dataset with the correct toolchain.

	options.shared_memory Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean]? Connects to the persistent shared memory datastore.
This requires you to run osrm-datastore prior to creating an OSRM object.

	options.dataset_name String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String]? Connects to the persistent shared memory datastore defined by --dataset_name option when running osrm-datastore.
This requires you to run osrm-datastore --dataset_name prior to creating an OSRM object.

	options.memory_file String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String]? DEPRECATED
Old behaviour: Path to a file on disk to store the memory using mmap. Current behaviour: setting this value is the same as setting mmap_memory: true.

	options.mmap_memory Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean]? Map on-disk files to virtual memory addresses (mmap), rather than loading into RAM.

	options.path String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String]? The path to the .osrm files. This is mutually exclusive with setting {options.shared_memory} to true.

	options.max_locations_trip Number [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number]? Max. locations supported in trip query (default: unlimited).

	options.max_locations_viaroute Number [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number]? Max. locations supported in viaroute query (default: unlimited).

	options.max_locations_distance_table Number [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number]? Max. locations supported in distance table query (default: unlimited).

	options.max_locations_map_matching Number [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number]? Max. locations supported in map-matching query (default: unlimited).

	options.max_radius_map_matching Number [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number]? Max. radius size supported in map matching query (default: 5).

	options.max_results_nearest Number [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number]? Max. results supported in nearest query (default: unlimited).

	options.max_alternatives Number [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number]? Max. number of alternatives supported in alternative routes query (default: 3).

route

Returns the fastest route between two or more coordinates while visiting the waypoints in order.

Parameters

	options Object [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object] Object literal containing parameters for the route query.

	options.coordinates Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? The coordinates this request will use, coordinates as [{lon},{lat}] values, in decimal degrees.

	options.bearings Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Limits the search to segments with given bearing in degrees towards true north in clockwise direction.
Can be null or an array of [{value},{range}] with integer 0 .. 360,integer 0 .. 180.

	options.radiuses Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Limits the coordinate snapping to streets in the given radius in meters. Can be null (unlimited, default) or double >= 0.

	options.hints Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Hints for the coordinate snapping. Array of base64 encoded strings.

	options.exclude Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? List of classes to avoid, order does not matter.

	options.generate_hints Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean] Whether or not adds a Hint to the response which can be used in subsequent requests. (optional, default true)

	options.alternatives Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean] Search for alternative routes. (optional, default false)

	options.alternatives Number [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number] Search for up to this many alternative routes.
Please note that even if alternative routes are requested, a result cannot be guaranteed. (optional, default 0)

	options.steps Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean] Return route steps for each route leg. (optional, default false)

	options.annotations (Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array] | Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean]) An array with strings of duration, nodes, distance, weight, datasources, speed or boolean for enabling/disabling all. (optional, default false)

	options.geometries String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String] Returned route geometry format (influences overview and per step). Can also be geojson. (optional, default polyline)

	options.overview String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String] Add overview geometry either full, simplified according to highest zoom level it could be display on, or not at all (false). (optional, default simplified)

	options.continue_straight Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean]? Forces the route to keep going straight at waypoints and don’t do a uturn even if it would be faster. Default value depends on the profile.

	options.approaches Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Keep waypoints on curb side. Can be null (unrestricted, default) or curb.
null/true/false

	options.waypoints Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Indices to coordinates to treat as waypoints. If not supplied, all coordinates are waypoints. Must include first and last coordinate index.

	options.format String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String]? Which output format to use, either json, or flatbuffers [https://github.com/Project-OSRM/osrm-backend/tree/master/include/engine/api/flatbuffers].

	options.snapping String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String]? Which edges can be snapped to, either default, or any. default only snaps to edges marked by the profile as is_startpoint, any will allow snapping to any edge in the routing graph.

	options.skip_waypoints Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean] Removes waypoints from the response. Waypoints are still calculated, but not serialized. Could be useful in case you are interested in some other part of response and do not want to transfer waste data. (optional, default false)

	callback Function [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/function]

Examples

var osrm = new OSRM("berlin-latest.osrm");
osrm.route({coordinates: [[52.519930,13.438640], [52.513191,13.415852]]}, function(err, result) {
 if(err) throw err;
 console.log(result.waypoints); // array of Waypoint objects representing all waypoints in order
 console.log(result.routes); // array of Route objects ordered by descending recommendation rank
});

Returns Object [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object] An array of Waypoint objects representing all waypoints in order AND an array of Route objects ordered by descending recommendation rank.

nearest

Snaps a coordinate to the street network and returns the nearest n matches.

Note: coordinates in the general options only supports a single {longitude},{latitude} entry.

Parameters

	options Object [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object] Object literal containing parameters for the nearest query.

	options.coordinates Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? The coordinates this request will use, coordinates as [{lon},{lat}] values, in decimal degrees.

	options.bearings Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Limits the search to segments with given bearing in degrees towards true north in clockwise direction.
Can be null or an array of [{value},{range}] with integer 0 .. 360,integer 0 .. 180.

	options.radiuses Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Limits the coordinate snapping to streets in the given radius in meters. Can be null (unlimited, default) or double >= 0.

	options.hints Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Hints for the coordinate snapping. Array of base64 encoded strings.

	options.generate_hints Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean] Whether or not adds a Hint to the response which can be used in subsequent requests. (optional, default true)

	options.number Number [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number] Number of nearest segments that should be returned.
Must be an integer greater than or equal to 1. (optional, default 1)

	options.approaches Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Keep waypoints on curb side. Can be null (unrestricted, default) or curb.

	options.format String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String]? Which output format to use, either json, or flatbuffers [https://github.com/Project-OSRM/osrm-backend/tree/master/include/engine/api/flatbuffers].

	options.snapping String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String]? Which edges can be snapped to, either default, or any. default only snaps to edges marked by the profile as is_startpoint, any will allow snapping to any edge in the routing graph.

	callback Function [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/function]

Examples

var osrm = new OSRM('network.osrm');
var options = {
 coordinates: [[13.388860,52.517037]],
 number: 3,
 bearings: [[0,20]]
};
osrm.nearest(options, function(err, response) {
 console.log(response.waypoints); // array of Waypoint objects
});

Returns Object [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object] containing waypoints.
waypoints: array of Ẁaypoint objects sorted by distance to the input coordinate.
Each object has an additional distance property, which is the distance in meters to the supplied input coordinate.

table

Computes duration table for the given locations. Allows for both symmetric and asymmetric tables.
Optionally returns distance table.

Parameters

	options Object [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object] Object literal containing parameters for the table query.

	options.coordinates Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? The coordinates this request will use, coordinates as [{lon},{lat}] values, in decimal degrees.

	options.bearings Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Limits the search to segments with given bearing in degrees towards true north in clockwise direction.
Can be null or an array of [{value},{range}] with integer 0 .. 360,integer 0 .. 180.

	options.radiuses Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Limits the coordinate snapping to streets in the given radius in meters. Can be null (unlimited, default) or double >= 0.

	options.hints Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Hints for the coordinate snapping. Array of base64 encoded strings.

	options.generate_hints Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean] Whether or not adds a Hint to the response which can be used in subsequent requests. (optional, default true)

	options.sources Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? An array of index elements (0 <= integer < #coordinates) to use
location with given index as source. Default is to use all.

	options.destinations Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? An array of index elements (0 <= integer < #coordinates) to use location with given index as destination. Default is to use all.

	options.approaches Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Keep waypoints on curb side. Can be null (unrestricted, default) or curb.

	options.fallback_speed Number [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number]? Replace null responses in result with as-the-crow-flies estimates based on fallback_speed. Value is in metres/second.

	options.fallback_coordinate String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String]? Either input (default) or snapped. If using a fallback_speed, use either the user-supplied coordinate (input), or the snapped coordinate (snapped) for calculating the as-the-crow-flies distance between two points.

	options.scale_factor Number [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number]? Multiply the table duration values in the table by this number for more controlled input into a route optimization solver.

	options.snapping String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String]? Which edges can be snapped to, either default, or any. default only snaps to edges marked by the profile as is_startpoint, any will allow snapping to any edge in the routing graph.

	options.annotations Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Return the requested table or tables in response. Can be ['duration'] (return the duration matrix, default), [distance'] (return the distance matrix), or ['duration', distance'] (return both the duration matrix and the distance matrix).

	callback Function [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/function]

Examples

var osrm = new OSRM('network.osrm');
var options = {
 coordinates: [
 [13.388860,52.517037],
 [13.397634,52.529407],
 [13.428555,52.523219]
]
};
osrm.table(options, function(err, response) {
 console.log(response.durations); // array of arrays, matrix in row-major order
 console.log(response.distances); // array of arrays, matrix in row-major order
 console.log(response.sources); // array of Waypoint objects
 console.log(response.destinations); // array of Waypoint objects
});

Returns Object [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object] containing durations, distances, sources, and destinations.
durations: array of arrays that stores the matrix in row-major order. durations[i][j] gives the travel time from the i-th waypoint to the j-th waypoint.
Values are given in seconds.
distances: array of arrays that stores the matrix in row-major order. distances[i][j] gives the travel time from the i-th waypoint to the j-th waypoint.
Values are given in meters.
sources: array of Ẁaypoint objects describing all sources in order.
destinations: array of Ẁaypoint objects describing all destinations in order.
fallback_speed_cells: (optional) if fallback_speed is used, will be an array of arrays of row,column values, indicating which cells contain estimated values.

tile

This generates Mapbox Vector Tiles [https://mapbox.com/vector-tiles] that can be viewed with a
vector-tile capable slippy-map viewer. The tiles contain road geometries and metadata that can
be used to examine the routing graph. The tiles are generated directly from the data in-memory,
so are in sync with actual routing results, and let you examine which roads are actually
routable,
and what weights they have applied.

Parameters

	ZXY Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array] an array consisting of x, y, and z values representing tile coordinates like
wiki.openstreetmap.org/wiki/Slippy_map_tilenames [https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames]
and are supported by vector tile viewers like Mapbox GL JS [https://www.mapbox.com/mapbox-gl-js/api/].

	callback Function [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/function]

Examples

var osrm = new OSRM('network.osrm');
osrm.tile([0, 0, 0], function(err, response) {
 if (err) throw err;
 fs.writeFileSync('./tile.vector.pbf', response); // write the buffer to a file
});

Returns Buffer [https://nodejs.org/api/buffer.html] contains a Protocol Buffer encoded vector tile.

match

Map matching matches given GPS points to the road network in the most plausible way.
Please note the request might result multiple sub-traces. Large jumps in the timestamps
(>60s) or improbable transitions lead to trace splits if a complete matching could
not be found. The algorithm might not be able to match all points. Outliers are removed
if they can not be matched successfully.

Parameters

	options Object [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object] Object literal containing parameters for the match query.

	options.coordinates Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? The coordinates this request will use, coordinates as [{lon},{lat}] values, in decimal degrees.

	options.bearings Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Limits the search to segments with given bearing in degrees towards true north in clockwise direction.
Can be null or an array of [{value},{range}] with integer 0 .. 360,integer 0 .. 180.

	options.hints Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Hints for the coordinate snapping. Array of base64 encoded strings.

	options.generate_hints Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean] Whether or not adds a Hint to the response which can be used in subsequent requests. (optional, default true)

	options.steps Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean] Return route steps for each route. (optional, default false)

	options.annotations (Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array] | Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean]) An array with strings of duration, nodes, distance, weight, datasources, speed or boolean for enabling/disabling all. (optional, default false)

	options.geometries String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String] Returned route geometry format (influences overview and per step). Can also be geojson. (optional, default polyline)

	options.overview String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String] Add overview geometry either full, simplified according to highest zoom level it could be display on, or not at all (false). (optional, default simplified)

	options.timestamps Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]<Number [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number]>? Timestamp of the input location (integers, UNIX-like timestamp).

	options.radiuses Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Standard deviation of GPS precision used for map matching. If applicable use GPS accuracy. Can be null for default value 5 meters or double >= 0.

	options.gaps String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String] Allows the input track splitting based on huge timestamp gaps between points. Either split or ignore. (optional, default split)

	options.tidy Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean] Allows the input track modification to obtain better matching quality for noisy tracks. (optional, default false)

	options.waypoints Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Indices to coordinates to treat as waypoints. If not supplied, all coordinates are waypoints. Must include first and last coordinate index.

	options.snapping String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String]? Which edges can be snapped to, either default, or any. default only snaps to edges marked by the profile as is_startpoint, any will allow snapping to any edge in the routing graph.

	callback Function [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/function]

Examples

var osrm = new OSRM('network.osrm');
var options = {
 coordinates: [[13.393252,52.542648],[13.39478,52.543079],[13.397389,52.542107]],
 timestamps: [1424684612, 1424684616, 1424684620]
};
osrm.match(options, function(err, response) {
 if (err) throw err;
 console.log(response.tracepoints); // array of Waypoint objects
 console.log(response.matchings); // array of Route objects
});

Returns Object [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object] containing tracepoints and matchings.
tracepoints Array of Ẁaypoint objects representing all points of the trace in order.
If the trace point was ommited by map matching because it is an outlier, the entry will be null.
Each Waypoint object has the following additional properties,
1) matchings_index: Index to the
Route object in matchings the sub-trace was matched to,
2) waypoint_index: Index of
the waypoint inside the matched route.
3) alternatives_count: Number of probable alternative matchings for this trace point. A value of zero indicate that this point was matched unambiguously. Split the trace at these points for incremental map matching.
matchings is an array of Route objects that assemble the trace. Each Route object has an additional confidence property,
which is the confidence of the matching. float value between 0 and 1. 1 is very confident that the matching is correct.

trip

The trip plugin solves the Traveling Salesman Problem using a greedy heuristic
(farthest-insertion algorithm) for 10 or _ more waypoints and uses brute force for less than 10
waypoints. The returned path does not have to be the shortest path, _ as TSP is NP-hard it is
only an approximation.

Note that all input coordinates have to be connected for the trip service to work.
Currently, not all combinations of roundtrip, source and destination are supported.
Right now, the following combinations are possible:

roundtrip	source	destination	supported
:——–	:—–	:———-	:——–
true	first	last	yes
true	first	any	yes
true	any	last	yes
true	any	any	yes
false	first	last	yes
false	first	any	no
false	any	last	no
false	any	any	no

Parameters

	options Object [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object] Object literal containing parameters for the trip query.

	options.coordinates Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? The coordinates this request will use, coordinates as [{lon},{lat}] values, in decimal degrees.

	options.bearings Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Limits the search to segments with given bearing in degrees towards true north in clockwise direction.
Can be null or an array of [{value},{range}] with integer 0 .. 360,integer 0 .. 180.

	options.radiuses Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Limits the coordinate snapping to streets in the given radius in meters. Can be double >= 0 or null (unlimited, default).

	options.hints Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Hints for the coordinate snapping. Array of base64 encoded strings.

	options.generate_hints Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean] Whether or not adds a Hint to the response which can be used in subsequent requests. (optional, default true)

	options.steps Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean] Return route steps for each route. (optional, default false)

	options.annotations (Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array] | Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean]) An array with strings of duration, nodes, distance, weight, datasources, speed or boolean for enabling/disabling all. (optional, default false)

	options.geometries String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String] Returned route geometry format (influences overview and per step). Can also be geojson. (optional, default polyline)

	options.overview String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String] Add overview geometry either full, simplified (optional, default simplified)

	options.roundtrip Boolean [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean] Return route is a roundtrip. (optional, default true)

	options.source String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String] Return route starts at any or first coordinate. (optional, default any)

	options.destination String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String] Return route ends at any or last coordinate. (optional, default any)

	options.approaches Array [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array]? Keep waypoints on curb side. Can be null (unrestricted, default) or curb.

	options.snapping String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String]? Which edges can be snapped to, either default, or any. default only snaps to edges marked by the profile as is_startpoint, any will allow snapping to any edge in the routing graph.

	callback Function [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/function]

Examples

var osrm = new OSRM('network.osrm');
var options = {
 coordinates: [
 [13.36761474609375, 52.51663871100423],
 [13.374481201171875, 52.506191342034576]
],
 source: "first",
 destination: "last",
 roundtrip: false
}
osrm.trip(options, function(err, response) {
 if (err) throw err;
 console.log(response.waypoints); // array of Waypoint objects
 console.log(response.trips); // array of Route objects
});

Returns Object [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object] containing waypoints and trips.
waypoints: an array of Waypoint objects representing all waypoints in input order.
Each Waypoint object has the following additional properties,
1) trips_index: index to trips of the sub-trip the point was matched to, and
2) waypoint_index: index of the point in the trip.
trips: an array of Route objects that assemble the trace.

Configuration

All plugins support a second additional object that is available to configure some NodeJS
specific behaviours.

Parameters

	plugin_config Object [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object]? Object literal containing parameters for the trip query.

	plugin_config.format String [https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String]? The format of the result object to various API calls.
Valid options are object (default if options.format is
json), which returns a standard Javascript object, as described above, and buffer(default if
options.format is flatbuffers), which will return a NodeJS
Buffer [https://nodejs.org/api/buffer.html] object, containing a JSON string or Flatbuffers
object. The latter has the advantage that it can be immediately serialized to disk/sent over the
network, and the generation of the string is performed outside the main NodeJS event loop. This
option is ignored by the tile plugin. Also note that options.format set to flatbuffers
cannot be used with plugin_config.format set to object. json_buffer is deprecated alias for
buffer.

Examples

var osrm = new OSRM('network.osrm');
var options = {
 coordinates: [
 [13.36761474609375, 52.51663871100423],
 [13.374481201171875, 52.506191342034576]
]
};
osrm.route(options, { format: "buffer" }, function(err, response) {
 if (err) throw err;
 console.log(response.toString("utf-8"));
});

Responses

Route

Represents a route through (potentially multiple) waypoints.

Parameters

	external documentation in
osrm-backend

RouteLeg

Represents a route between two waypoints.

Parameters

	external documentation in
osrm-backend

RouteStep

A step consists of a maneuver such as a turn or merge, followed by a distance of travel along a
single way to the subsequent step.

Parameters

	external documentation in
osrm-backend

StepManeuver

Parameters

	external documentation in
osrm-backend

Waypoint

Object used to describe waypoint on a route.

Parameters

	external documentation in
osrm-backend

 Releasing

Releasing

Releasing a new version of node-osrm is mostly automated using Travis CI.

The version of node-osrm is locked to the same version as osrm-backend. Every node-osrm should have a osrm-backend release of the same version. Of course, only release a node-osrm after the release has been tagged in osrm-backend.

These steps all happen on master. After the release is out, create a branch using the MAJOR.MINOR version of the release to document code changes made for that version.

Steps to release

	Update the osrm_release field in package.json to the corresonding git tag in osrm-backend.

Confirm the desired OSRM branch and commit to master.

	Bump node-osrm version

Update the CHANGELOG.md and the package.json version if needed.

	Check that Travis CI builds are passing [https://travis-ci.org/Project-OSRM/node-osrm] for the latest commit on master.

	Publishing binaries

If travis builds are passing then it’s time to publish binaries by committing with a message containing [publish binary]. Use an empty commit for this.

git commit --allow-empty -m "[publish binary] vMAJOR.MINOR.PATCH"

	Test

Locally you can now test binaries. Cleanup, re-install, and run the tests like:

make clean
npm install # will pull remote binaries
npm ls # confirm deps are correct
make test

	Tag

Once binaries are published for Linux and OS X then its time to tag a new release